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ABSTRACT

There are many fluid flows where the onset of transition can be caused by dif-
ferent instability mechanisms which compete among themselves. Here we consider
the interaction of two types of instability mode (at an asymptotically large Reynolds
number) which can occur in the flow above a rotating disc. In particular, we exam-
ine the interaction between lower-branch Tollmien-Schlichting (TS) waves and the
upper-branch, stationary, inviscid crossflow vortex whose asymptotic structure has
been described by Hall (1986). This problem is studied in the context of investi-
gating the effect of the vortex on the stability characteristics of a small TS wave.
Essentially, it is found that the primary effect is felt through the modification to
the mean flow induced by the presence of the vortex. Initially, the TS wave is taken
to be linear in character and we show (for the cases of both a linear and a nonlinear
stationary vortex) that the vortex can exhibit both stabilizing and destabilizing
effects on the TS wave and the nature of this influence is wholly dependent upon
the orientation of this latter instability. Further, we examine the problem with a
larger TS wave, whose size is chosen so as to ensure that this mode is nonlinear in
its own right. An amplitude equation for the evolution of the TS wave is derived
which admits solutions corresponding to finite amplitude, stable, traveling waves.

* This research was supported by the National Aeronautics and Space Adminis-
tration under NASA Contract No. NAS1-18605 while the author was in residence
at ICASE, NASA Langley Research Center, Hampton, VA 23665.






1. Introduction

Many studies concerned with the instability of three-dimensional boundary
layers have been motivated by a desire to understand the phenomenon of transition
to turbulence in fluid flows. Here we are concerned with a self-consistent asymptotic
description of the interaction of stationary cross-flow vortices and lower-branch
Tollmien-Schlichting waves (hereafter referred to as TS waves) in the boundary
layer of the flow induced by a rotating disc. This particular flow is susceptible to an
instability similar to that which occurs in the boundary layer of flows over a swept
wing; a situation which has practical relevance to the development of Laminar Flow
Control wings. Further, there is an exact solution of the Navier-Stokes equations
which describes the rotating disc flow. This makes the study of this rotating disc
problem particularly suitable for a theoretical analysis of the interaction of the

vortices and the TS waves.

We will concentrate on the description of the interaction which occurs in flows
at an asymptotically large Reynolds number (which is based upon the angular
velocity of the disc, a typical lengthscale of the problem and the kinematic viscosity
of the flow). The lower-branch TS waves are then described by a classical interactive
triple deck structure, the key elements of which are reviewed by Messiter (1979),
Stewartson (1981) and Smith (1982). The TS waves, which are travelling modes,
have a wavelength much greater than the boundary layer thickness and a small
wavespeed. The structure of these disturbances is outlined in Section 3.

The crossflow vortex instability structure can occur only in three-dimensional
boundary layers and was first examined both theoretically and experimentally by
Gregory et al (1955). The stationary vortex mechanism appears when a direction
for the disturbance is chosen such that the effective basic velocity profile contains
an inflexion point at the same location at which it vanishes. Gregory et al used
the china clay technique to show that for the rotating disc flow the vortex insta-
bility takes the form of a regularly spaced pattern of equiangular spiral vortices
which is stationary relative to the disc. Stuart (in Gregory et al), using inviscid
theory, predicted the number of vortices which would be observed in experiment as
approximately four times greater than that actually seen, although his calculation
of an angle of 13° between the axes of the vortices and the radius vector on the

disc was in excellent agreement with the experiments. The difference between the



experimental observations and the results of the inviscid analysis has been shown to
be due to viscous effects. Malik (1986a) calculated the neutral curve for stationary
disturbances and found a second mode. Earlier, Federov et al (1976) had observed
experimentally this second mode, which, as in the inviscid case, appeared as a pat-
tern of spiral vortices. The number of these vortices was seen to be between 14 and

16 and these had axes inclined at angles of approximately 20° to the radius vector.

Hall (1986) has given a linear, asymptotic account of the inviscid mode found
by Gregory et al (1955) for large Reynolds numbers. This work has been extended
by Gajjar (1989) to examine nonlinear effects. Hall (1986) also elucidated a triple-
deck type structure for the second type of stationary vortex which corresponds to
an effective velocity profile with zero shear stress at the wall. This problem has
also been studied using a weakly nonlinear approach by MacKerrell (1987, 1988).
Further, Bassom & Gajjar (1988) have examined the properties of a non-stationary

version of the crossflow instability.

Much work has been performed in relation to the important problem of the
interaction of the interaction of TS waves with Gortler vortices (an instability as-
sociated with flows over curved surfaces). See, for example, Nayfeh (1981), Malik
(1986b), Bennett & Hall (1988), Bennett et. al. (1988), Hall & Smith (1988,
1089a,b), Daudpota et al (1988), Bassom & Hall (1988) and the references therein.
However, relatively little attention has been paid to the type of crossflow-TS in-
teraction examined in this paper, although, in particular, we refer to the work of
Reed (1984, 1985) who investigated this interaction and found that the crossflow
vortices lead to a ‘double exponential’ growth in the TS waves. A linear analysis of
the problem was used and the vortex was permitted to grow exponentially although
no account was made for nonlinear effects. The vortex was allowed to force a TS
wave of appropriate wavelength such that the growth rate of the latter mode was
proportional to the amplitude of the vortex. The amplitude of the TS wave then
grows like the exponential of an exponential. In the aforementioned papers Reed
also examines the question of interaction between crossflow vortices of particular
wavelengths. However, in both of these problems, the approach adopted ignores
the crucial fact that for a completely rational description of the importance of the
interaction process, each of the instability modes involved should be neutrally sta-

ble at leading order in their own rights. Otherwise, the vortex growth due to any



interaction process is no larger than the growth experienced in its’ absence and the
importance of the role of the interaction is impossible to assess. For this reason,
together with the neglect of nonlinear terms in her subsequent analysis, it must
be concluded that the relevance of Reed’s work to practical situations is at best
doubtful.

The primary motivation for the present investigation stems from the question of
how the presence of an inviscid stationary vortex affects the stability characteristics
of the TS wave. We emphasize that at this stage we do not concern ourselves
with calculations for the growth rates of the respective instabilities. Firstly, we
consider the problem of a small crossflow vortex which has an asymptotic structure
as described in Hall (1986). The vortex has a critical layer structure in the vicinity
of the inflexion point of the basic flow and this critical layer is linear in character.
The vortex then has a very small TS wave superimposed upon it and the effect
of the vortex on the neutral stability properties of the TS wave is obtained. We
find that the vortex can stabilise or destabilise the TS wave depending upon the
orientation of the latter mode. The amplitude of the TS wave is then allowed to
increase to the point at which it becomes nonlinear in its own right and amplitude
equations for the evolution of the TS wave are obtained.

In addition, the problem of the interaction between a stronger, nonlinear vortex
and a small TS wave is considered. It is concluded that for both the linear and the
nonlinear vortex problems the effect of the vortex on the stability of the TS wave
is felt primarily through the correction to the effective mean flow induced by the
presence of the vortex.

The procedure in the remainder of the paper is follows. In Section 2 we formu-
late the problem and indicate the basic disturbance structure for the linear crossflow
vortex. We impose a small TS disturbance on this configuration in Section 3 and
we examine the neutral stability characteristics of this wave in the presence of the
vortex. The TS wave is increased in size to become nonlinear in Section 4 and the
problem with a larger, now nonlinear, vortex is considered in Section 5. Finally, we

draw some conclusions in Section 6.



2. Formulation of the problem and the linear vortex structure

We consider the case in which the disc rotates about the z-axis with angular
velocity 2. Relative to cylindrical polar axes (r,8,2) which rotate with the disc
and in which r and 2 have been made dimensionless with respect to some reference
lengthscale /, the continuity and Navier-Stokes equations for an incompressible fluid

in the region 2 > 0 are

V=0, (2.1a)

%1?1 +(uV)u+2(QAu)+QA(QAr) = —%Vp +vViu. (2-1%)

Here u is the velocity vector, r is the coordinate vector, p is the fluid density, p is
the fluid pressure and v the kinematic viscosity. The Reynolds number R for the
flow is given by R = % /v and is taken to be large throughout the following.
Anticipating the structures which govern the interactions described in the fol-
lowing sections it is found convenient to define the small parameter € = R~37. As

the axes rotate with the disc, the basic steady flow is given by the Von-K4rm4n

solution

u=up =0 (ra(¢),rv(¢),e2w(e)), p = pl*0%e5(¢), (2.2)

where z = €!2¢ and @, 9, @ satisfy the equations
”

-1+’ +aw=1a", 26(1+8)+ow=10, (2.3, b)

w + 22 =0, P +uww —w =0. (2.3¢,d)
Here primes denote differentiation with respect to ¢ and the appropriate boundary

conditions are

(2.3¢)
t—0, ¥-— -1 as & — oo.

We shall be concerned with perturbations to the basic flow and it is convenient
to now derive the equations governing these disturbances. If the steady solution is

perturbed by writing

u=up+IQ(U,V,W), p=p20%(p+P), (2.4)



where U,V,W, P are small three-dimensional disturbances and if expressions (2.4)
are substituted into the governing equations (2.1) for the flow in the rotating frame,

we then obtain the following perturbation equations:

U oU 10V oW

Tt traet e Y (2.5a)
(gt+r": +”56'07+€ "—’a)U+“U+'W‘;——2(1+v)V—K; oo
N e L
(§t+ru: +v620-+512—;)v+uV+rWZ +2(1+ 7 )U+£:i 25
(o2 L w )=t L (-5
(%+fﬁ§;+ﬁ§§+e”w%)w+ ”W%
(2.5d)

d vV o 7] opP 1
+ (UE--}- ~%0 +W6_z> W = —'5;‘*' 'E‘L(W)'

Here,
po & 10t 10 @
ar?  r2 962 0 822’

2.1 The linear vortex structure

Since we will be concerned with the effect of the vortex on a small TS wave
which, in the first instance, will be taken to be of such size so as to have an in-
finitesimal influence on the vortex, we first need to consider the structure of the
vortex when the TS wave is absent. Following the work of Gregory et al (1955), the
inviscid vortex has wavelengths scaled on the boundary layer thickness and so we

consider disturbance quantities with r and § dependence given by E, defined by

E = exp [E:—z{/r a(r,e)dr + Gﬂ(e)}] . (2.6a)

We shall restrict our attention to examining disturbances in a neighbourhood of

some point r = r, and expand « and § in the forms

a=ay+€etag+..., B=Bo+€ePr1+.... (2.6b)



where 4 = ol + é’i is the effective wavenumber of the disturbance. Thus W,
satisfies a Rayleigh r¢‘-’:qua.tion and we obtain stationary modes by demanding that
the point of inflexion of the effective basic flow coincides with the point at which this
flow vanishes, say at &£ = £. This criterion, together with (2.9) and its appropriate
boundary conditions that Wio — 0 as £ — 0 and as &€ — oo yields the values

for ap and fo. The solution of this eigenproblem gives

i} 4.26
=146, = 116, 9% == (2.10)
n

In this inviscid zone it is also found that the mean flow quantities Usg, V3o, W3o,

Psg satisfy the equations

2Us0 + Wy = 0, (2.11a)

Uso — W00 — 2aUs0 — & Wao + 2(1 + 9)Vao = 0, (2.115)
Vao — ©Vag — 2@Vao — 5 Wag — 2(1 + 3)Usg = O, (2.11c)
Py = —2 (|W30|2) . (2.11d)

To determine these correction terms we need to consider explicitly both the
wall layer and the critical layer structure (at ¢ = £). In the wall layer where we
define the O(1) co-ordinate Z by ¢ = ¢*Z, the total velocity and pressure fields

assume the forms

’

u=r,(t )e=0€'Z+...+6 [(U;ro +..)E+ c.c.]
+82 [(U)y + . ) E? 4 e+ raet (U, + L))+ (2.124)

v =ra(®)ecoe®Z + .. +6[(V11;,+...)E+c.c.]

+6% [(V;ro +..)E* +ce + rne_S(Va.L + .. .)] 4.y (2.12b)
w= %(w")ezofzozz + ...
+6 [e"(W:rO +..)E+ c.c.} (2.12¢)
+ 6% [e“(WzTo )E* +cc. + €8 WJO ]
p=€24(ﬁ)£=o+...+5[€4(PlTo E'—i—cc]
(2.12d)
+ 62 [64(PJO+...)E2+C.C.+( T )] +.



In general, the wavenumbers will be complex quantities but we shall only con-
sider neutral disturbances and so take Q0, 1y« --y B0, P1... to be real. The dis-
turbance structure in the z-direction is as described in Hall (1986), Gajjar (1989).
There is an inviscid layer of O(e!?), (the same depth as the boundary layer), and
to satisfy no-slip conditions at the wall a viscous layer of thickness O(€*®) must be
present. In contrast to the earlier work we need to explicitly consider the mean flow
correction induced by the vortex because this correction plays a crucial role in the
interaction problems to be described in subsequent sections. We find that in the

inviscid zone the velocity and pressure fields assume the forms

U= Tnl—l,(f)+5 [(UIO + €4U11 +.. ) E + C.C.]

(2.7a)
+62 [(Ugo +..) E* + e+ ¥ (Uso + - )] +0o(8%),
v = rnﬁ(f)—i-& [(VIO + 64V11 +.. ) E + c.c.] (2 7b)
462 [(Vao +.-) B + .+ rre 2 (Voo +..)] + O(6°), '
w = e2w(€)+6 [(W1o +etW + .. ) E + c.c.] g
2.
+ 6% [(Wao +...) E? +cec.+ (Wao +...)] + 0(6%), (2.7)
p= 624f)(£)+5 [(P10 + €4P11 + .. ) E + C.C.] (27d)

+ 6% [(Pao+...) E* + c.c. + (Pao + ] +0(6%).
Here § < 1 is the infinitesimal vortex amplitude, the disturbance quantities
Uio,U11s .-+ Uz20,Uso etc. are functions of € and r,, and c.c. denotes complex con-

jugate. We substitute (2.7) into (2.5) and find that the fundamental vortex terms

satisfy
) (aoUlo + f—ovlo) + W;O =0, (2.8(1,)
n

iUOB UlO + Tn’t—l.'Wlo = —iaoPm, (2.8b)

. i B
tUogV10 + 00 Wio = —z;—Plo, (2.8¢)

n
iUoWio = —Pio, (2.8d)

where Ugg = rnaot+ Pob is the effective basic velocity profile. Eliminating Uio,Vio

and P;o from these equations yields

UoB (W;'o - ’YS'Ww) = UysWios (2.9)



Substituting these expansions into (2.5) shows that UIO,VIL,WIO,PITO satisfy the
equations given in Hall (1986) for the wall layer quantities. The solution of these
equations ultimately leads to the determination of the values of a; and 8, in
(2.6). However, this is not of primary interest here. We remark that the quantities
UJo: V;,L, WJO are proportional to Z,Z and Z2 respectively, and hence the boundary
conditions at £ = 0 for the mean-flow disturbance quantities Usp, Va0, W30 (given
by (2.11) above) are that

U30 = V3o = Wao =0 on f = Q. (2.13)

Clearly, we also require that the mean flow quantities decay as we leave the boundary

layer so
Usp,Vag — 0 as § — oo. (2.14)

However, we also need to determine the effect of the critical layer at £ =¢
on these mean flow terms. From (2.8) we see that as §¢ — §, Upp = O -8
and singularities exist in the inviscid zone solutions U;o and Vio. To smooth these
singularities we invoke viscous effects by considering a zone of thickness O(€1)
surrounding ¢ = £. In this region we suppose that & = £ + €2 where % is O(1) and

then the velocity and pressure fields are

w=(rotst etraais+ cer a5 4 .. +
3 nte 2 nvg
§[(e*010+ U +eUi+..)E+ c.c] (2.15q)
+ 62 [rne™? (Uso + ' Us1 +...) +...],

_ 4 . 1 8 _IIA2
v = rnvg-i—e rnvf-z+-2-e rnvgz +...)+

8 [(e* V10 + Vis + €V1s +...) E + c.c.] (2.150)
+ 52 [Tné—lz (Vao + 64V31 + ...) + ...] ,
w = ¢l? (u‘:g+ e‘ﬂ)'€-2+...) +6 [(Wlo + Wi + Wi + ...)E+ c.c.] (2.15¢)
+52[(W3o+E4W31+...)+...],
=ep(E)+...+6[(Pro+ €*Piy + ¥P1a+...) E + c.c.
p= @+ (Pt PPt JBree]
+ 6% [(Pso+€*Pay +...) +...].



The solutions for the fundamental terms are well known. Substituting these
expansions into (2.5) and recalling the definitions of Uio, V10, W10 and Pyo we find

that
1301

Wio = Wio(€), Pio = Pio(8) =

where we have defined Bjx = rna; ) (€) + ﬂjl—’(k)(f)-

;From continuity we find that Vio = -—5%“’)‘—“-(710 and equation (2.5b) implies
that
dszlo . n = Bo _! =!
—3—2-2—' — t(Bolz + Blo) Upo = Tn'yg (ﬂoué- - r,,aovE)Wlo(E_). (2.16)

To match with the solutions in the inviscid zone requires that U = O(1/2) as

|2| — oo and the solution of (2.16) with this property is

=~ _  Bo _t ! = [T Bio r8
Uo = rn’yoBm(ﬂoue——rnaove-)Wlo(E)/; exp |tT z+—B;1- exp 350, dr,

where we remark that Bo; < 0.

Turning to the equations for the mean flow terms in (2.15) we find that Wy, is

constant across the critical layer, but that Uao satisfies

dU. | R S
d;O = ;—; (W10U10 + WIOUIO) ’
or,
_ 2 2 _
U30 = ;—‘/ Re(UloW;o)dt + A, (2.18)
n -

where A is some constant and an asterisk on a quantity denotes the complex conju-
gate of that quantity. It is apparent from (2.18) that, unless f Re(U10W15)dt =0,
the mean flow term Usp in the inviscid zone must suffer a discontinuity across the
critical layer. We may determine this jump by multiplying (2.17) by W,, inte-
grating with respect to % and interchanging the order of integration. The resulting

integral assumes a form of the type

3) = /0 M) (‘i—_fz—ll) dt, (2.19)

and the behaviour of J(2) for large |2| is well known, see Haberman (1976). After

some algebra, taking real parts and inserting in (2.18), we retrieve the necessary



discontinuity across the critical layer,

oo Zﬂﬂo(ﬂoﬁ;— - Tnao'l_);-)

_ g
[Uso(z)]_oo 272 Bor [Wio(€)]. (2.20a)
We also find from the governing equations that Vaq = —rnaoﬁgg/ﬂo so that
. TnQo = .
[Vso(z)]iooo = a 2 [Uao(z)]iooo . (2.200)
0

Moving on to higher order terms in (2.15a — d) reveals that the term dUs, /dz
also suffers a non-zero jump across the critical layer which means a discontinuity
in the derivative of the mean flow term Us, (in the main boundary layer) across

¢ = £. Repeating the procedure described above we find that

q ©0

-dU31 - ~ co
25|~ elUn] . (2.20¢)
and TR
31 - —~ []
_ 4z | = we- [V?’o]-—oo . (2.20d)

To conclude this section, we note that the presence of the vortex has induced a
mean flow correction term of size O(62¢~'2) across the whole of the boundary layer.
This correction is governed by equations (2.11) with boundary conditions (2.13),

(2.14), and jump conditions hold across ¢ = &, which are given by

B QWﬁo(ﬁoﬁ'g - Tnaol_);-)

&+ _ Z\12
[Uso(€)]32 Y272 Boy [W1o(8)I%, (2.210.5)
_ roo _
Vaol )¢ = -2 [Uso(&)IEL
dU. &+ _ - dv. £+ _ _
] et [ e o

We have concentrated on the properties of the mean flow correction terms be-
cause when we consider the interaction of the vortex with the TS wave in subsequent
sections, it is found that the effect of the vortex on the TS wave is felt primarily
through this correction to the mean flow.

We solved the differential system (2.11), (2.13), (2.14), (2.21) using a fourth

order Runge-Kutta method combined with a shooting technique. Of importance

10



is the sign of the discontinuity appearing in (2.21a) and it was found that this
term is negative. Clearly, the scaled size of the vortex affects the magnitude of
the discontinuities in (2.21) and in Figure (1) we illustrate the solutions for the
corrections Usg, Vao and W3p when [Ugo(f)]g—t = —1. We find in this case that
Ugo(€ = 0) = —0.86 x 10~2 and V,o(¢€ = 0) = —0.896. We now consider the effect

of adding a small TS wave into the flow.

3. Interaction of a linear vortex with a small TS wave

The lower-branch TS waves we shall concern ourselves with here are the classi-
cal type described by a triple deck structure. The waves have O(e~°) wavenumbers
(and hence wavelengths much larger than the O(e!?) thickness of the boundary
layer) and small, O(€®), wavespeeds. The details of the triple deck may be found
in, for example, Smith (1979a), but we note here that the three decks are of thick-
nesses O(€°), O(e'?) and O(e'®) in the direction normal to the disc. The first of
these decks is a region of potential flow, the middle deck is primarily inviscid but

rotational in character and the thin wall layer is viscous.

We shall suppose in the first instance that the size of the TS wave is extremely
small, say A(< §) where we recall that 6 is the infinitesimal vortex size. In this case,
at leading orders at least, the vortex structure described in the previous section is
unaffected by the presence of the TS wave. We have already shown that the vortex
induces a correction of size 0(62R%‘) to the mean flow throughout the boundary
layer and we anticipate that there are essentially two mechanisms which could be
responsible for altering the neutral stability characteristics of the TS wave. Firstly,
we have the modification to the mean flow due to the vortex and, secondly, the
TS wave will interact with the vortex terms to produce further modes which in
turn interact to affect the TS and vortex instabilities. Of crucial importance for the
ensuing study is the question as to which of these processes is the more important as
far as the TS wave is concerned. We find after analysis that the former mechanism
(the mean flow change induced by the vortex) has the dominating effect and this

simplifies the following calculations.

As the vortex induces a relative change of O(6%¢~'?) in the size of the mean

11



flow we expect a similar effect on the neutral wavenumbers and wavespeed for the
TS wave. Anticipating this result we seek TS disturbance quantities with r and ¢

dependence given by F, defined by

F = exp [.6% {/ &(r, €)dr + 8f(e) — fl(e)t}] , (3.1a)
where,

&= (&0 +...)+ 6% (a0 +...), B = (o + o) + 6212 (B + e

Q=e(Qo+...) +6% (g0 +...).
(3.16)

We see that the perturbed wavenumbers &00, Boo and the perturbed frequency {1,
measure the effect of the vortex on the neutral stability of the TS wave. Of course
there are terms in the wavenumber and frequency expansions not explicitly detailed
in (3.1) and larger than the &00,,@00 and ﬁoo corrections, but these terms are
independent of the vortex properties whereas our aim here is to determine this
vortex effect. Hence we shall merely seek expressions for the values of g, ,500 and
Qoo.

The fundamental vortex terms and the TS wave interact to produce insta-
bilities with spatial dependences of the forms EF, E-1F etc. These waves have
a structure similar to that for the crossflow vortex but with a more complicated
critical layer configuration surrounding ¢ = ¢. Indeed, here these waves have two
critical layers separated by an O(e!®) distance and each of thickness O(e'®). There
is the potential for the interaction of these modes with the vortex to drive the TS
wave but, as already mentioned, this interaction is of lesser importance than the
mean flow modification due to the presence of the vortex. To simplify the analysis
below we will hence indicate the sizes of these ‘mixed’ modes in the various layers
but shall not need to give the full details of these modes.

Firstly, we again concentrate on the main boundary layer where z = €!2¢, and

we modify expansions (2.7a — d) to consider

u=rat(§) +6[(Uro+.. ) E+cc]+ 6% [rne ?(Uso+...) + N
3 pt1 2 12 (7 (3:20)
+A |(Uo1 +...)F + O(6e3E*'F) + 6% (U21F+...)+c.c]+...,
v=rn0(§) +6[(Vio+...)E +c.c.]+ 6% [rae 3 (Voo +...) +.0]+ .

. . 3.2b
+A(Vo1+...)F+O(5€_3EiF)+626_12(V21F+...)+c.c]+..., (8.2

12



w=e?w() +6|(Wio+...)E+ece]+86 [(Wepo+...)+..]+...+A

R - 3.2¢

[es(Wm +..)F+0(6¢3EEX'F) + 6%° (W21F+...) +c.c] +.iny (8.2¢)

p=e*p(&) +6[(Pro+...)E+ce]+ 6 [(Poo+...)+...]+...+ 4 (5.24)
3.2

[63(1301 +..)F + O(be 3EX1F) + 6%¢° (ﬁle +.. ) + c.c] I

Here the vortex terms (Ujo, ..., Pio) and mean flow corrections (Uso, .- -+ P3o)
satisfy the equations previously given in (2.8), (2.11). Inserting (3.2) in the govern-
ing equations (2.5) leads to the usual TS solutions

A~ - _I A A ! ~ 1‘1&0 P A
UOl = Agu ) V01 = on N W01 = —-T—UOB, P01 = const., (33)

n

where /io denotes an unknown displacement and we have defined (Afj B = rpdjat+ ,Bjt_).
We also find that

ﬁgl = fiano + Boﬁ s ‘}21 = AOVE}O +B01_) ’

R iAo (A . . iBo A .
Wiy, = ——r-g (UOOB + rpboUso + ﬂoVso) - _T‘Q'UOBa Py; = const., (3.4)

n n

where By is another constant and Uoop = rn oot + ﬁoot';.

For the present we assume that these solutions are valid for £ > £; i.e. above
the critical layer. An explicit analysis of the critical layer is required to determine
how these solutions need to be modified for ¢ < €.

Moving into the upper deck where z = €°g and §=0O(1) say, the vortex decays

exponentially and the expansions are

w= A (fot..) Ft 6% (i +..) Fteel, (3.50)
v=—tnt...+A[S (Fo+...)F+62° (B +...) F+eel], (3.5b)
w =6121I)(00) + 62W30(00) +...+
. . (3.5¢)
A [63 (wo+...)F+62e"’9 (w1+...)F+c.c.] s
p=€p(co) + A (Po+...) F + 62¢ % (py+...) F+ee]. (3.5d)

Feeding these expansions into (2.5) yields a straightforward upper-deck problem,

see Smith (1979b) for example. We demand that all disturbance quantities decay
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as § — oo and obtain matching conditions between the main deck and upper deck

solutions. In particular, we find that

cra A ﬂo: CA A P a ;7 LA A aAﬁO
1(aouo + ——vo) +—=—=0, —ifoto= —iQopPgy, Vo= _o’ —tfowo = ———.

n 3y Tn ag

We need solutions of this system which match with (3.3) as £ — oo, and this

requires

A

2
B Ao, (3.6a)

Py =

~

n0

52

n

where 42 = &2 + 5§. Considering the next order system, matching with (3.4) is

achieved if
A a2 A ~ A
280045 — Bo (aoaoo + 5%

TnY0 BoA3

) By,. (3.6b)

We need next to consider the critical layer where z = €!2£+ €!®2, with 2=0(1).
The main deck solutions (3.3) & (3.4) mean that inside the critical layer our fluid

quantities develop as

’

u =rn (g + 1‘1,6—542-*—...) +6[(e* 0w+ ... )E+ce]+6%[rae 2Us0+...] +...

+ 4 [(Uo1 + .. )F + 062 *E*'F) + 8*( 00 F +...) + cel,
(3.7a)

v =rn (% + 17%642 +.. )+ (e Vo + .. )E+ece] + 8% [rae” Va0 +..] +...

+A[(Vor +..)F + O(8*¢ B E*'F) + 63V F+..) + ce,
(3.76)

w=e?(Wg+..)+6[(Wio+...)E+ce] + 6% [Wa+...] +...

+ A [ef*(v:V01 +..)F+O(6%¢ 2E*F) + §2(e=OWy F + .. )+ c.c.] ,
(3.7¢)

p=e¥*p(E) +...+ 6 [(Pro+...) E+cc]+6° [Poo+...] +...

r 2 3.7d
+ A [63(P01 +..)F +O0(6% 2E*'F) + 6%(¢ %P1 F +...) + c.c.] . (3.74)
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The vortex terms Ujo, V1o, Uso,. .. are as in expansions (2.15a — d) and fol-
low from the critical layer analysis of the previous section. On using (3.7) in the

governing equations (2.5) we find that the TS quantities are given by

2 A 2 A 2 A A A A
U Aot Vo1 Ao? Wor = ——1’—1_-—0- (UOB)E, Po1 = Posr, (3.80.)
n
2 1 A ~ AV
Uz1 =40 35 Va1 = 4o a?o,
r4 -1
. é . (3.8b)
ng = —1Ap [&0[_]30 + r—O-V30:| 4 const., Pqyy = Pay.
n

Matching these solutions with the main deck quantities (3.3), (3.4) (which we
supposed to be valid for £ > £) shows that, for 2 — —oo0, then (3.8) matches with
(3.3) & (3.4) if these latter solutions are the main deck solutions for £ < £ as well.
Hence, as far as the TS wave is concerned, the critical layer at & = £ is a purely
passive affair and (3.3) & (3.4) continue to be the valid main deck solutions below
the critical layer. To complete the analysis for the TS wave we need to consider
the thin viscous wall layer which is of thickness O(e!®). We notice that this TS
lower deck is asymptotically much thicker than the O(e'®) sized wall layer for the
vortex. If inside the lower deck we have z = €!5Z with Z = O(1), then the vortex
quantities and the mean flow correction generated by the vortex are easily found by
taking appropriate Taylor expansions about £ = 0 for the vortex terms satisfying

(2.8) and (2.11). In particular, in this wall layer the fluid quantities take the forms

w=rn g2 +...+6 [(IJ’IIO +...)E+ c.c.] + 62 [rne"gﬁ'mZ +.. ] +...
+A [(U;f1 L )F 4 06 EEF) 4+ 62(e7 12U, + . ) F +ce| + .-
(3.9a)
v =rpTp€ % + ...+ 6 [(‘7110 + ... )JE+ c.c.] + 62 [rne‘gﬁ'mZ +.. ] +...

+A [(Vo’f1 L )F 4 OB EEIF) + 62 (Vh + ) F o]+,
(3.95)

' 15 3 “i IIZ2
w =W Z+...+5[e (W10+...)E+c.c]+6 [ mg 4. ]+

(3.9¢)
+A [ef‘(wg1 . )P+ O(6E*'F) + 63 W), +..)F +ec| +...,
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p=624i)(0)+...+6[63(1311:0+...)E+c.c.] + 6% [Bm(0) +...] +...

+ A [S(RL + . )F + O(E*'F) + 62(c°P}, + .. )F + ce| +....
(3.9d)
Here ﬁg,ﬁé, @, denote the values of (a'(s))e=o , (1‘)’(6)) eeo’ (w,(s));s:o’ where
i, 7, @ satisfy (2.3), and similarly ﬁ'm, 17:,,, wﬁ; denote the values of the derivatives
of the mean flow terms Uso, V3o and Wao (defined by (2.11), (2.13), (2.14) & (2.21))
evaluated at £ = 0.
Substituting these expressions into (2.5) and comparing leading order terms in

the TS disturbance quantities leads to the usual lower deck problem

ow]
z(aoUgl + = Bo VOTI) oL -, (3.10a)
8z
s o N 62UT
t(AoZ - QO)UJ1 + r,,'u,QWOT1 zaoPJI + azgl , (3.100)
N A _l ﬂ asz
i(AoZ — no)VoTl + r,,vowgf1 = —z;fpgfl TZ%’ (3.10¢)
P(;rl = ﬁm, (3.10d)

with the necessary no-slip conditions Ugl = VOTl = WOT1 = 0 at Z = 0 and the
requirement that the solutions should match with the main deck solutions (3.3) as
Z — oo. Here we have denoted o = &ornﬁ; + Bot‘):) and we solve (3.10) in the
usual way. The unknowns Ugl, VJr are eliminated between (3.10a — ¢) to yield an

equation for WOTI, which may be solved analytically by making the substitutions

) N
4 ! 9] 3
Ac=ile, n=ab ( _ _) S £
Ao
With these definitions it is found that the no-slip conditions at Z = 0 together with
the matching with (3.3) can only be achieved if
~ oo a 2 a '
Tn'AYgPOI </ Al(t)dt) = —-Zz\oAngAl (7)0), (3.12(1)
n

0

where At is the Airy function (see Abramowitz & Stegun 1964). Combining (3.12a)
with (3.6a) yields the leading order eigenrelation,

[ Ai(t)dt A} (3,120
Ar' (770) ’ﬁoﬁoz . .
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It is well known that (3.12b) has solutions for real &, Bo and Qo with

>

2%
oA

Y

= Kl = 2.297,

= K, = 0.4355, (3.13)

3>

Oupal o

see Smith (1979a,b). Since our TS waves are three-dimensional, (3.13) admits an

infinity of solutions. It is convenient to eliminate the radial distance r,, by writing

-1 —-3 A
2

~ A L }_A ~ 3 a
nd =Tn nO’ Qg = Tn Qg, ﬂd =Tn ‘ﬂO) Yd = 7'7?, Yo, and Ad =Tn ‘AO'

Then if u = a‘; we obtain the solutions

5
' AR
4 1.001 (ﬁO + "“_)0) a ~ 2 ' ' g‘
af = . Ba= by, Qa=220743 (ao + uvo) . (3.14)
1+ p?

Here p measures the angle ¢ which the TS wave makes with the radial direction
on the disc, since ¢ = tan™! . The solutions &g, ,@d and Q; are sketched in Figure
(2). The solutions (3.14) are, strictly speaking, valid only for u < u.(= 0.8284) or,
equivalently, for Mg > 0. The analysis outlined above has implicitly taken >0
although the modifications required for X4 < 0 are quite straightforward and stem
from the consideration of the appropriate branches of the many-valued functions
which arise.

We may derive equations satisfied by UL, V;rl,WfI1 & P.L by equating higher
order terms when (3.9) is substituted in (2.5). We obtain an equation for WL by
eliminating UL & V;r1 using a suitable combination of the r- and #- momentum

equations and the continuity equation, and we find that
Fwl W) i(Reo+ Am)RRP

4 — 1 on? = AZ A7 (no) = (7 + (@ = 1)no] Ai(n), (3.15)

~ - A ~ i A

~ _I _l ~ _I _I A‘ Q
where Agg = &ooTnily + PooTos Am = GoTnl,, + Bot,,, ® = —m, and the
substitutions (3.11) have been made. The solution of (3.15) which satisfies the no-
slip conditions at Z = 0 and which matches with solutions (3.4) in the main deck
provides a second relation between Py, and Bo. Combining with the earlier result

(3.6b) and using (3.6a), (3.12a) provides the eigenrelation for the correction terms
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&0, Boo and (lgo;-

Ao (&o&oo + ﬂoﬂoo) _1(Xoo + Am) 12 [_ 20

—_ e - A —
3032 r2 32 °l 3K,0,
a L P N ~ ~ A
Baino) (2658 Moo 2K 3 Kiflao (3.16)
A1’ (no) 3 (oo +Am)  3Kalo  (Roo+ Am)
130 .« < 21303005
= =22 (800 + Am) + —-——————O?ﬁo :
B Bs

This equation admits real solutions for &g, Boo and ﬁoo only if the coeflicient

. s . . A -4, ~ 2 - . .
of Ai(no)/At (no) vanishes. Redefining &oo = rn * &pog and foo = 7 Booq implies
that

&ood = Mifooa + M, (oo = r2 [Rlﬁow + Rz] ’ (8.17a,b)
where
(2&1,3&4, g K ) o
e v I TR O L
(55— 2%) (55— 2%)
and

2K, (M, a, + o)
Rl: a I A 1y 1? R2 PO
3(Qqtig + Paty)? 3( &gt

Il

(3.17¢, f)

The dependences of M, M3, R) & R; upon the parameter p are illustrated in
Figure (3). We see that depending on the chosen value of ﬁoo,i, the neutral values
for &ooq and (lgoq can be of either sign. The results (3.17) indicate how the neutral
curve for the TS wave is affected by the presence of the vortex and in the following
section we demonstrate that the effect of the vortex is largely determined by the
inclination of the TS wave (tan™! u) to the radial direction. In addition, we now
consider the more realistic problem of allowing for a larger TS wave and indeed it

is taken to be sufficiently large so as to be nonlinear itself.
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4. The interaction of a linear vortex with a weakly nonlinear TS wave

Our aim is to increase the size of the TS wave until the mean flow correction
produced by the self-interaction of the TS wave is as large as the mean flow cor-
rection produced by the vortex. This will ensure that at this stage the TS wave
becomes nonlinear and this approach can be used to determine the stability of the
TS wave to the vortex. We still assume that the vortex is small so that 6§ < 1 and
then analysis of the system described in Section 3 suggests that the crucial size of

the TS wave when nonlinear effects become important is when
A =663, (4.1)

where A is the unscaled amplitude of the TS wave defined in (3.2). It is straightfor-
ward to check that at this TS size the analysis presented in Section 2 to determine
the structure of the stationary vortex is not affected by interactions of the TS wave
with either itself or the vortex. Consequently, to the orders required here the results
of Section 2 & 3 for the vortex quantities continue to hold.

As is usual in the weakly nonlinear problem for a TS wave the nonlinearity
manifests itself in the lower deck, whereas the main and upper deck solutions remain
essentially linear in character. We slightly modify the method used in the previous
section by obtaining an evolution equation for the TS amplitude in the vicinity of
a chosen point rather than obtaining an equation for the neutral curve and we base
our approach on that given by Hall & Smith (1982). If we consider TS waves close
to the point (rn,8,) we define the O(1) coordinate r1 by

r=rp+ 6% 2ry, (4.2)

and allow the TS wave to evolve on the r; lengthscale. Consequently, we redefine
F given by (3.1) by

F = exp [2'5 { / " a(r, )dr + 05(e) - ﬁ(e)t}] , (4.30)

where,
& =bo, 8= (ﬂo+...)+526_12(ﬁoo+...),

. . R (4.3b)
Q=e(0+...) +6% % (Qoo +...).
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Here the vortex terms U 1¢0’ e ,}Slio again follow from suitable Taylor expan-
sions of the solutions to (2.8) around ¢ = 0. A significant difference between the
expansions (4.5) and the corresponding (3.9) for the linear TS problem is that now
the mean flow correction induced by the vortex in the lower deck is of the same
size as that produced by the interaction of the TS wave with itself. Hence the
terms Up,,..., Py are no longer the simple Taylor expansions of the mean flows
(Uso, ..., P3p) generated by the vortex interacting with itself in the main bound-
ary layer and which satisfy (2.11). Since outside the boundary layer the TS wave
self-interacts to produce mean flow terms of size only O(6%€°), (i.e. the same size
correction as in the lower deck) we notice that equations (2.11) are still relevant,
together with boundary conditions (2.13), (2.14) and jump conditions (2.21). Hence
the leading order mean-flow terms across the whole boundary layer are unaffected
by the presence of the weakly nonlinear TS wave.

Substituting (4.5) into equations (2.5) and examining the TS quantities yields
a system which is very similar in character to that discussed by Smith (19795). At
leading orders we find that the linear lower deck problem (3.10) applies so that
matching with the main deck solutions yields the linear eigenproblem (3.12b) as
before which has solution given by (3.14).

The mean flow terms U,,; and Vinr satisfy equations of the forms

Wy  if . . ,aul a(Ul )
gz = 2 () ol - vhwhy) + ovdy S+ wh 2ol (0

PV ) . A a(v.ly*
gz = a0 (U)W - iy + il Fon w wh 20 (g

To match with the mean flow produced by the self-interaction of the vortex in

the main deck requires
H [
Untp — 4,,2, Vo — 9,2, as Z — o0,

where @, and o,, are defined below (3.9). Substituting the solutions of (3.10)

together with definitions (3.11) reveals that U,,; and VinL are given by

Ut = b (/’7 Gl(t)dt> I/iolz + ﬁ’*m
No

1 I2g L o1
13T Ay 1514 A

(m — no), (4.7a)

20



where

- L .
Ga(t) = i~ | aa(@ath — Batin) £(2) — A’:?(z,do) / Ai(r)dr | T* + cec.,
n -l

o]

Lo {f% (fm: Ai(r)dr) dt;} |

At (no)

and where L(t) satisfies %Z—ac- —tL =1 with £L(n) =0,L — 0 as t — oo, so that

t.

£08) = Ay / t (fa‘t:;fr)

The second harmonic terms in (4.5) satisfy the equations

5 t
A Bo oW,
2i(&oU), + ;;vjl) + T2 =, (4.80)
N PN S VNN AN 12
22(AQZ - ﬂo)Uzl + Tnu0W21 - —‘ZZQOPQI + UOI‘EE"‘ - W01 aZ + 6Z2 ) (4.8b)
. . 236 oW vl sl
2% (302 ~ o)V, + rate Wy, = — = Pl + V], AL - W], 0L+ S, (480)
le = const. (4.8d)

We may obtain an equation for VVL by eliminating U.L and V;1 from (4.8a,b,¢).
We require the boundary conditions of UL,VJI and WJI vanishing on Z = 0 and
matching conditions as Z — oo are obtained by considering the main and upper
deck equations to be satisfied by the harmonic terms. This is all straightforward
and follows from the work of Smith (1979b) so we merely state the solution for W.L

here. We obtain

3w 2iXo(Ao)?
21 _ _
= p

o (S Aiter) Falto | Ai(t)dt] + Bydi(zin),

No
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where

A'(
. [ , . 1_)1 ’72 ¢
Ga(t) =473 -&d(&dﬁo — Bafio) L(2) — Ai?(ndo) /rro Ai(r)dr [ T* + c.c.,
. i ( [ Ai(r)dr) dt,
B A1’ (no) ’

and where L(t) satisfies ‘-f;pﬂ- —tL =1 with L(no) = 0,£ — 0 as t — o0, so that

L) = 4i() /ﬂ t (faz:;ﬁ

The second harmonic terms in (4.5) satisfy the equations

ty.

oW},
52

2ot} + L)+
n

=0, (4.8a)

towd 1 oul ol

2(%0Z — Qo) U}, + ratoW]; = —2i60 P}, TUG TS - Wh SR SR (a8h)

. y 213 oW avl syl
2i(R0Z — o)V, + ravyW), = — - Pl +v} oL, oL S (480)
P2T1 = const. (4.8d)

We may obtain an equation for WL by eliminating UL and VJI from (4.8a,b,¢).
We require the boundary conditions of UL, V;1 and WL vanishing on Z = 0 and
matching conditions as Z — oo are obtained by considering the main and upper
deck equations to be satisfied by the harmonic terms. This is all straightforward
and follows from the work of Smith (1979b) so we merely state the solution for W.Jl
here. We obtain

W), 2ido(Ao)? [
an? SR
7 2 (/> Ait)dt)

’ n L
F, + Ai (n)/ Ai(t)dt] + By Ai(237),

o
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where .
1 [f:; Ai(‘]z)R(%)d(h] J

Fu = 4i(0) fio (Ai(q1))?

q1,

and
B=-2-% [2Ai" (n)4i(n) + A7 (no) Ai (n)] , 5 = 2%y,

and the constant BT is chosen so that BWL/an =0 at n = no and

owh [ A2 1 8°w,
on 4’1033A§ on®

as n — 00. (4.9)

n=no
Finally, to recover the evolution equation for the amplitude parameter Ag for
the TS solutions we inspect the governing system for the terms U;rl,VaTl,W:L, Pgl.

This set of equations take the form

» Bo oW
1(0‘0U:L + 'T:VJJ + _5_2% = F,
e s , . 02Ul
i(AoZ — QO)U;r1 + TnfLOW:L + WOP;L — 6221 = F,,
" st ot ifo ot 22Vl
t()\oz - ﬂo)V31 + Tn’UOW31 + ?—'P31 - 6—2'5— = F3,
n

P;Tl = const.,

where Fy, F; and F3 are combinations of lower order TS and mean flow terms. We
can use the standard method to obtain a governing equation for W:L which assumes

the form

WY, naW;fl owl =

ond on

B2 » B% 4o 2800 1 .. 0 BoBoo
B —_— - — -_—
el ol a W

PR orwl)  1aw) awdy)” Ll )*91@1.
o~ x|V 572 2 9Z 0Z g\ 0t 572
W ; wi 2 ;
~i aZOl (&oraUmr + BoVmL) + th;rl 5780 Ums + ﬂonL)]
B (3\00 + S\m)

.l-
oW,
- [((n—no)+@no) e —WJI],

(4.11a)
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where we have used definitions (3.11) and those given below (3.15). The relevant

boundary conditions are that

owd,

on =

wl =o0=
and
Wl =ik Sy _ iBoko

A A o+ ’
on T,,,A,é'( ° m) TnAé—

(4.115)

as n — oo.

The system (4.11) only admits a satisfactory solution if a certain solvability
criterion is met, and it is this criterion which leads to the desired evolution equation.
To obtain this condition, we need to consider the adjoint problem to (4.11), and
using the results of Ince (1956), Hall & Smith (1982), it is found that the adjoint

function for this problem is
X ) '
S(n) = A¢ — ,—O—ﬁ , 4.12
(n) (m) - = ) (n) (4.12)
where the function £ is as given in the definition for G and G3 in (4.7). If we write

the right hand side of (4.11a) as R.(n), multiply both sides of (4.11a) by S(n),

integrate by parts and use (4.11%), we obtain the solvability condition

A (n
0

lﬁg’?oAz(no) .ot 15) At - o
A —trnuo-aTl-i-ﬂoovo Ag = 5 SR.dn. (4.13)

We now use the definitions of R, together with the solutions for U,,r, V,, L and
Winr (given in (4.7),(4.9)) and that for WJI to obtain an evolution equation for A,.
This equation takes the general form

94y
arl

= [TIBOO + T2Qoo + Ta] Ao+ %fio,fio,% (4.14)
n

where T, ..., T4 are complex functions of a4, ,Bd, A4 and no. All of the integrations

necessary in the determination of Ty,...,T were evaluated numerically. Initial

conditions at a suitably large value of 1, Say Noo, Were found asymptotically and

then the defining equations for the various functions integrated using a fourth order

Runge-Kutta scheme. The integrations were all performed using the trapezium rule

and the results were checked by varying the value of Moo and the step length used.
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These checks lead us to believe that the computed values of Ty — T, are correct to
within 0.1%.

In the above equation, each of the coefficients Ty — T4 is a function of the
orientation of the TS wave and so are functions of the parameter p. Further, T,
T, & T, are all independent of vortex quantities; i.e. are functions only of the TS
wavenumbers &4, ,@d and no. Since our prime concern at the outset was to determine
the effect of the vortex upon the stability of the TS wave, the precise values of T1,
T, and T4 are not of immediate interest, save to remark that we found that for all
admissible values of u (< g ~ 0.8284), Re(T,) < 0, see Figure (4).

If we write (4.14) in the modified form

%flﬂ — b, Ao + e Aol Aol (4.15)
then it is clear that on the basis of linear theory the TS wave is unstable if Re(bs) >
0. However, (4.15) admits an ‘equilibrium’ solution with

| Aol* = ( M) ;

" real(c.)

so for Re(c.) < O a non-zero, finite, steady solution is possible. It may be easily
shown that this solution is stable and then the TS wave is said to be supercritically
stable.

The only term in (4.14) which contains vortex-induced quantities is the term

T3 which is given by the formula

([ 5%am  Aad ' A3 A
NECIPARET R WNE. TO1
38; Aab3 333 1.001 A1’ (no)
,[51,' 2Kyt _2( K 1) 4i(no) | (5.2 + fus

= —1 — =T '7 - o du + ﬂdv .
3ﬂ§ 3)\3’ d 1.001 Al (T)o) m m)

Here, K, is defined by (3.13), no by (3.11), the nondimensionalised TS wavenumbers
are g, ﬁd and ﬁlm, ﬁ'm are the derivatives of the mean flow terms Usg, Vao induced
by the vortex when evaluated at £ = 0. We see immediately that, for a given g,
T, is proportional to the size of the mean flow correction due to the vortex and
on examining equations (2.11), (2.13), (2.14) and the jump conditions (2.21) which
determine this mean flow it is clear that ﬁlm and ’17;" are, in turn, proportional to

the square of the amplitude of the crossflow vortex.
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Hence the effect of the vortex on the stability of the TS wave can be measured
directly through the coefficient T5. More particularly, we can see from (4.14) that
if Re(T3) < O then the TS wave is stabilised by the presence of the vortex, whereas
the opposite conclusion may be drawn for Re(T3) > 0. This function is illustrated
in Figure (5). We notice that Re(T3) may be of either sign and this is determined
solely by the value of u (or equivalently by the orientation of the TS wave). In
particular, we find that for 4 > 0.297 or —0.296 < 4 < 0 (corresponding to TS
waves making angles between —16.5° and 0° or greater than about 16.5° with the
outward radial direction) the effect of Re(T3) is destabilising. Conversely, for TS

waves making other angles with the radial direction, the opposite effect is observed.

Crucially then, our analysis in this section suggests that on a weakly nonlinear
basis the TS waves are supercritically stable as is the case in the absence of the
vortex, but that the presence of the of vortex can be both of a stabilising or of
a destabilising effect, with the change between these states occuring for TS waves
inclined at roughly 16.5° with the outward radius on the disc. Some comments and

brief conclusions concerning these results will be made in Section 6.

5. The secondary instability of a fully nonlinear vortex to a TS wave

In this section we attempt to generalise the work contained in Sections 2 &
3. Thus far our concern has been only with the problem involving a linear vortex
and now we consider the effects of nonlinearity of this instability mode. We can
anticipate that the nonlinearity will affect the governing equations for the mean
flow induced by the vortex and that this in turn will alter the evolution equation
for the TS wave.

For simplicity, we shall revert to considering the problem of the interaction
involving an infinitesimally small TS wave (of size A as defined in (3.2)). In this
case, the nonlinear vortex structure is unaffected by the presence of the TS wave, at
least to the orders that we will be concerned with. We can use the results described
by Gajjar (1989), who showed that when the vortex size reaches O(R™3) (=0(e?)),
then the first effects of nonlinearity are encountered in the critical layer although

the remainder of the flow structure remains linear. It is this sized vortex which we
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consider here and we note that the mean flow correction generated by the vortex
is now O(e*) which is larger than the vortex itself. This large mean flow correction
is necessary due to the properties of the nonlinear critical layer, see Stewartson
(1981) and Haberman (1972). Since the vortex induces an O(e*) correction and
following the ideas presented in Section 3, we expect the TS wave to have spatial

and temporal dependence as in the function Fj, defined by

Fy = exp Lig {/ &(r, €)dr + 6/(€) - ﬁ(e)t}] , (5.1a)

where,
&=do, B=Bo+...)+e(Boo+--.),

A

. . (5.1b)
1= 63(00 + ) + 67(900 + )

Here, as in (4.3), ﬁoo and 1o denote the changes in the azimuthal wavenumber and
frequency of the TS wave due to the presence of the vortex. We permit the scaled

amplitude of the TS wave to evolve on an r; lengthscale, where
r=rp+e'ry, (5.2)

replaces the definition (4.2). The linear theory for the TS wave will allow us to
derive an evolution equation of the type (4.14) with the nonlinear term on the right
hand side of the equation absent. Indeed, following the work contained in Sections
3 & 4 it is easily shown that the stability of the TS wave is governed by an analysis
identical to that already performed and that the linear evolution equation of the

TS disturbance will satisfy an equation of the form

>

0

r

= [Quéooa + Q20004 + Qa] A, (5.3)

Q
-

where A is the scaled amplitude of the TS wave, foog = n G Boo, Qlood = Tn %ﬁoo
and Qq,Q2 & Qa are functions of the orientation of the TS and certain mean flow
correction parameters which follow from the analysis of the nonlinear critical layer.
Further, as in the discussion following (4.14), it is only the function Q3 which
contains the mean flow velocities induced by the vortex and hence is the only term
to give information concerning the effect of the vortex on the stability of the TS

perturbation. Finally, Qs is given by the same formula as determined T3 save that
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the mean flow derivative terms present on the right hand side of (4.16) should be
replaced by the equivalent terms for the (larger) vortex-induced mean flow.

To summarise the above, we conclude that the evolution equation for the TS
wave follows immediately once we have determined the mean flow correction due to
the nonlinear vortex. We consequently consider this problem, in a manner similar
to that used in Section 2 and below we determine the governing equations for the

mean flow.

5.1 The nonlinear vortex

We follow Gajjar (1989) and use scalings for the vortex appropriate to the
nonlinear critical layer calculation to be addressed. In the inviscid zone, where

z = €'2¢, the implied velocity and pressure fields take the forms

u=ra8(¢) + e*rntm + €€ (U + @im1) + ..., (5.4a)
v=r0(&) + €'rntm + € (Vio + 1) + ..., (5.4b)
w=eWio + e'20(€) + %y + ..., (5.4c)
p=ePo+..., (5.4d)

where #,,, U, and ,, are the leading order mean flow terms induced by the vortex.
We reiterate that all the mean flow terms in these expansions (terms with subscript
m) are functions of ¢ and r; and that the mean flow corrections in the radial
and azimuthal directions are larger than the fundamental vortex terms. We seek
solutions for these latter functions in terms of the crossflow variable z, where z is

defined so that (2.6) may be rewritten as
E = exp(iz). (2.6')

Substituting expansions (5.4) into (2.5) and comparing suitable terms yields
that there is a solution for the vortex terms of the form
(U10, V10, Wio, P1o) =

5.5
A(u01 (Tn, f) €os T, Vo1 (Tn, f) COsS T, woy (Tm 5) sin z, po1 (Tm 5) cos -’C)s ( )
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where A is the scaled size of the vortex and (uo1,vo1,Wo1, Po1) satisfies

Po dwo; _ U ! _
apuor + ;_ VoL~ 3¢ =0, —Uppuo1 + Tnl Wo1 = &oPo1,
" 5.6
¥ ; , (5.6)
—Uppvo1 + rn¥ wo1 = T—Pm, Uopwo1 = —Poy-

n

We recall that Upp = rnao@i+ 807 and note that wo; satisfies the Rayleigh equation
(2.9).
Additionally, we find that the mean flow terms satisfy equations very similar

to (2.11), and in particular

2ﬁm + —d'f— = 0, (5.7(1)
d*a,, _dun, o s N
e w T 20y, — @ Wy + 2(1 + 0)Tm = 0, (5.78)
d%s,, _dv - s N
T D dén — 26Ty — U W — 2(1 + 8)Tm = 0. (5.7¢)

The wall layer structure for this nonlinear vortex is analogous to that in Section
2 for the linear vortex and so we conclude that we need boundary conditions for

the induced mean flow of the form
U = Uy = Wy =0 on £=0, U, Om — 0 as & —o0. (5.8)

The most dramatic change between the work here and that given earlier is
the treatment of the critical layer zone. For now we expect a nonlinear analysis
to become appropriate in order to compute the jumps in the mean flow and its’
derivative across & = £. As before, we suppose that the critical layer is described
by & = £+ €%2,2 = O(1), and then the analysis of system (5.6) as £ — ¢ implies

that in the critical layer the relevant expansions are

’ 1 "
u=rplig + € (ao + rnﬁf—é) + €8 <ﬁ,, + ErnﬁEE:z) + ey (5.9q)
! 1 H
v=ravg+ et (50 + rabgt) + € (al + Ernﬁ€—22> T (5.95)
w = e + €12 (1I)1 + u‘)g) + ., (5.9¢)
p=¢€Po+eip+.... (5.94)
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Using these expansions in (2.5) reveals that the first order unknowns o, o in

(5.9) are given by

sin z, ﬁo = Apoo cos z, (510)

where poo = poi(£) as defined by (5.6) and Bjx = rno;alF (&) + 8;5(%)(§). It is
clear that these solutions match on to (5.5) and (5.6) outside the critical layer.

If we define the unknowns ;5 = rpa;ix + 80k, then we find upon substitution
in the continuity equation (2.5a) and on using (5.10), that #igo = Coo (a constant).
This, when matching with the inviscid layer solutions surrounding the critical layer,
gives that

lim [aoﬁm + —'Bﬂﬁm] = lim [aoﬁm + ﬂ—oﬁm] ,
E— it Tn r

or, equivalently, that

i.e. the jump in ,, across the critical layer is proportional to the jump in &,, across
that layer.
After straightforward analysis (see Gajjar (1989) for further details) it is found

that 9, satisfies the equation

2_'
_ 3%  Avipoo . 0o Bo TRYWTg| | %o
Bg12+ B =A —_— —F, (5.11
(Bo12 + Byo) 3z | Bor sinz—- P00 rn Bo; sinz + - (5.11)

where Bm = BlO + Coo.
We recall that Bg; < 0 and this enables us to write (5.11) in a canonical form.
If we define

— 2/
Bio Bo:C. [ Bo  TnY0Vg
bo=Ko(Y —V*), C.¥Y=2245  Ko=-0Zt(20 ,
v of ) Bo 0 72 (fn By,
A 2
BOIC':A:e3 - Ac_l, (> O) Cf = _’Y_O_ZP_O_Q_’
B3,
(5.12)
we can reduce (5.11) to the form
av* ov* o%v+
nNr—— — Ae—=—=— = 0. 5.13
Y 5z TeinToy ~ AeGye (5.13)
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We note that C. < 0so 2 —» Foo corresponds to Y — Foo and the boundary

conditions to ensure a match with the inviscid zone solutions now take the forms

. Tn(Um)T  cosz 1
- — .14
V' —Y K, + +O<Y2), (5.14)

as Y — +oo where ()T denotes lim,__, 7= (Um) respectively.
The system (5.13) & (5.14) is a classical one and the solution characteristics are

well known, see Haberman (1972), Stewartson (1981). If we define V* = 3% /3Y?

then we obtain the system

8%y 8% 9%y
Y—a—mé?—i+smxb—7§ = Ac-a—Yz, (5150,)
0 1 n(Om)T
—i — —Y2-—1_(1—)—-Y+ln Y|cosz+ B¥(z)+..., as Y — Foo. (5.15b
0

Y 2 Ko
We may apply the standard technique of integrating (5.15a) with respect to Y,
applying the boundary conditions (5.156) and then integrating over a period in z.
After appealing to periodicity and a further integration with respect to Y we find
(see Haberman 1972) that, on using (5.12),

2w
(v, —o%) =— Ko f (Bf - By ) sinzdz. (5.16)
0

2 AeTn

The numerical solution of (5.15) is well documented (Haberman (1972), Smith
& Bodonyi (1982)) and if we define the phase shift (—q?)) by

1 2

—$= (B — By ) sinzdz, (5.17)

™ Jo
then the dependence of é on the parameter X, is shown in Figure (6). (This figure
was plotted using data kindly supplied by Dr. J. Gajjar.) It is known that as Ac
becomes very large 43 — 7 which corresponds to the result for a linear vortex,
whereas for small Ac, J) — 0. Using the transformations (5.10, 5.12) we find that
(5.16) becomes

z Bo(Bots — rnooTy) /. g
@)l = 200 (9) . (.150
3 (€)IEF = —2 [am (&I (5.18)
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These are the mean flow jump conditions which are the counterparts of (2.21).
We can easily show that for A. > 1 (and hence ¢ —» ), the size of , diminishes
(from (5.10), (5.12)) and the jump criteria approach those of (2.21) for the linear
vortex.

We need to extend the above to consider the shift in the derivative of the mean
flow across the critical layer and this necessitates consideration of the next order
terms in expansions (5.9).

To derive the necessary information we can proceed to obtain a differential
equation to determine 9;. The governing equations for these unknowns are given
by Gajjar (1989) so we do not repeat them here. Instead, we merely state that we

can reduce the problem for 9; to the canonical form

b A\ ] 03w o4y KO"Df
Ya‘——:z:ay2 + sin Ia—'Yg, — Ae _3Y4 = X(xa ) - C. (5.190,)

with boundary conditions

rnC.

v — % 1+ rmBo1C2(s,,) 7| Yo+ [Bor (8m1) 7 — B1o(3,,)7 | Y2+0(Y In ¥,
(5.195)
as |Y| — oo. Here (z‘):n)q:,(t‘)ml)¢ denote [ﬁ:n(f)] s ,[17m1(f)]€_.gq; respec-
tively, where these mean flow terms are defined in the expansions (5.4). Also x(z,Y)
is a very complicated expression involving v (the solution of (5.15)). However, we
find upon integrating (5.19a) with respect to Y and integrating over a period in z,
that the function x(z,Y) plays no part in determining the jump in 17:,, across the

critical layer and, on reapplying transformations (5.12), we obtain the result

[’_’:"(5)]2 = 0 [om (€)]57 . (5.20a)

Similarly, we also find that

[‘_"m(‘f)] i = Wg [ﬁm(f)lgf- (5.200)

Consequently, we now have a complete determination of the mean flow induced
by the nonlinear vortex; namely the defining equations (5.7), boundary conditions
(5.8) and jump conditions (5.18) & (5.20). This system is almost identical to that
studied in Section 2 and in practice (%ms Um, Wy,) is merely a multiple of the so-

lutions (Uso, Va0, Wao) found earlier. This multiplication factor arises due to the
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difference in the jump conditions (5.18a) and (2.21a). This observation leads us to
some immediate conclusions concerning the effect of the vortex on the stability of
an infinitesimal TS wave. For a given orientation of the TS wave, the function Q3
appearing in (5.3) is a real multiple of T3 in the evolution equation (4.14). Conse-
quently, the nonlinear vortex has a stabilising influence on the TS wave if the latter
mode makes an angle ¢ with the outward radial direction if 0° < ¢ < 16.5° or if
é < —16.5%, and is destabilising otherwise.

To conclude this investigation of the weakly nonlinear vortex problem we con-
sider the size of the mean flow jump across the critical layer. We know from the
forms of (5.18a) and (4.16) that the stabilising or destabilising effect on the TS
wave is proportional to the jump across the critical layer. From the transforma-
tions (5.12), solutions (5.10) and (5.18a), it is seen that the jump in @, across the
critical layer is proportional to <2>A2, which is a function of A.. Figure (7) illustrates
this dependence, and two asymptotic cases naturally arise. Firstly,as A — 0 we
know that A, — oo and 43 — 7 so the jump across the critical layer becomes
small. This corresponds to returning to the linear theory of Section 2. Addition-
ally, for small A, (which corresponds to a large vortex), we have from (5.12) that
the scaled amplitude of the vortex A ~ O(/\c_%). It is also known that in this limit
43 — 2.C), where %C(l) = 1.379 (Smith & Bodonyi 1982). Hence the mean flow
jump is O(A:%) and so becomes large. Following the work of Gajjar (1989) it can
be shown that when the scaled amplitude A ~ O(e‘lai), the nature of the critical
layer changes to a structure similar to that given by Bodonyi et al (1983) for a
strongly nonlinear critical layer and thus a modified analysis of the flow is required.

We have thus shown in this section that the effect of a nonlinear vortex on
the stability of the TS wave is very similar to that of the linear vortex considered
earlier with the main difference arising from the changed mean flow jump across
the critical layer. As previously, the nature of the influence of the vortex is largely
determined by the orientation of the TS wave. Of interest would be the extension
of our work to study the case of a strongly nonlinear vortex; the flow structure for

this problem following from the discussion of the limit A, — O given above.
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6. Conclusions

In this paper we have attempted to provide a rational asymptotic analysis of
the problem of interaction between a stationary crossflow vortex in the flow induced
by a rotating disc and a classical lower branch TS wave. The interaction has been
studied in the context of this particular basic flow because this flow is susceptible
to instabilities which occur in the boundary layer of a swept wing and this is of
relevance to the development of Laminar Flow Control wings.

At first, the asymptotic structure of a linear crossflow vortex was obtained and
we have investigated the effect of this vortex on both linear and on weakly nonlinear
TS waves. Of particular interest in our work has been the problem of the behaviour
of the TS wave in the neighbourhood of the critical layer of the vortex which is
situated inside the main part of the boundary layer of the flow. As far as the TS
wave is concerned, the critical layer plays a passive role and the leading order TS
solutions pass through the critical layer region unaffected. In addition, we have
demonstrated that the effect of the vortex on the stability of the travelling TS wave
is felt entirely through the mean flow generated by the presence of the vortex. On
analysing this phenomenon, we have found that depending on the orientation of
the TS wave, the vortex can have either a stabilising or a destabilising effect- in
particular the vortex stabilises the TS wave if the latter makes an angle between 0°
and 16.5° or less than —16.5° with the outward radial direction. This work has an
obvious practical implication, namely that it is possible that when these two types
of instability are present in a three-dimensional flow that the crossflow vortex can
destabilise the TS wave.

The above interaction structure has also been extended to the study of a non-
linear vortex. The findings described in the last paragraph are largely unaltered
by this change, at least as far as the effect of the vortex on the stability of an
infinitesimal TS wave is concerned. The analysis for the linear vortex was easily
adapted to study the implications for the stability of a weakly nonlinear TS wave in
the presence of a linear vortex, although the work for the case of a nonlinear vortex
is not so readily extendable for the problem with this larger TS amplitude. This
extension is currently being considered by the authors.

Further, the study of Section 5 and that of Gajjar (1989) points to an even

larger crossflow vortex which may be described by asymptotic means. This again
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provides scope for future work.

Finally, we should remark that here we have considered the problem of inter-
action between a pair of specific crossflow and TS instabilities. In realistic flows it
is likely that other modes could be present and it is desirable to be able to classify
the relative importance of other possible interaction mechanisms. In particular,
we are looking at the problem of interaction between TS waves and the stationary
vortex mode described by Hall (1986) which is characterised by having zero wall
shear stress for the effective crossflow velocity profile. In addition, we note that our
approach developed here can only deal with interactions at asymptotically large
Reynolds numbers and the importance of the crossflow vortex on the stability of
the TS wave at lower Reynolds numbers can only be resolved by pursuing extensive

numerical calculations.
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Figure Captions

Fig (1). The dependence of the mean flow terms Usg, Vao and Wag (defined by
(2.7) and satisfying (2.11), (2.13), (2.14), (2.21)) upon the boundary layer coordi-

nate &.

Fig (2). The neutral non-dimensional wavenumbers &4, B4 and frequency (14 for

the TS wave defined by (3.1) expressed as functions of the waveangle ¢ = tan™' p.

Fig (3). The functions (i) M1, Mz and (ii) Ry, Rz which determine the correc-
tions to the neutral wavenumbers and frequency of the TS wave due to the presence

of the vortex.

Fig (4). The real part of the coefficient T4 of the nonlinear term in the TS

evolution equation (4.14) expressed as a function of u.

Fig (5). The real part of the coefficient T3 in the evolution equation (4.14)

which determines the effect of the crossflow vortex on the stability of the TS wave.
Fig (6). The function é = ¢()\.) given by (5.15) and (5.17).

Fig (7). Dependence of the vortex quantity #AZ? upon the parameter A.. Here
¢ is defined by (5.15), (5.17) and A is the scaled vortex amplitude size.
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